Skip to main content
Log in

The Effect of the Imposed Boundary Rate on the Formability of Strain Rate Sensitive Sheets Using the M-K Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In spite of the fact that the experimental results indicate the significant effect of strain rate on forming limits of sheets, this effect is neglected in all theoretical methods of prediction of Forming Limit Diagrams (FLDs). The purpose of this paper is to modify the most renowned theoretical method of determination of FLDs (e.g., M-K model) so as to enable it to take into account the effect of strain rate. To achieve this aim, the traditional assumption of preexistence of an initial geometrical inhomogeneity in the sheet has been replaced with the assumption of a preexisting “material” inhomogeneity. It has been shown that using this assumption, the strain rate would not be omitted from equations; thus, it is possible to demonstrate its effect on FLDs. To validate the results, they are compared with some published experimental data. The good agreement between the theoretical and experimental results shows capabilities of the proposed method in predicting the effect of the imposed rate at the boundary (which is physically the effect of the punch speed difference in sheet forming) on FLDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( f_{0} \) :

Initial imperfection factor

K :

Strength coefficient

m :

Strain rate sensitivity exponent

n :

Strain hardening exponent

\( r \) :

Normal anisotropy coefficient

t :

Material thickness

α :

In-plane principal stresses ratio \( (\upsigma_{2} /\upsigma_{1} ) \)

\( \dot{\bar{\upvarepsilon }} \) :

Rate of effective plastic strain

\( \bar{\upvarepsilon } \) :

Effective plastic strain

\( \upvarepsilon_{0} \) :

Pre-strain value

\( d\bar{\upvarepsilon } \) :

Effective plastic strain increment

\( d\upvarepsilon \) :

Strain increment tensor

\( d\upvarepsilon_{1} ,\,d\upvarepsilon_{2} ,\,d\upvarepsilon_{3} \) :

Strain increments in the material coordinates

\( d\upvarepsilon_{tt} ,\,d\upvarepsilon_{nn} ,\,d\upvarepsilon_{nt} \) :

Strain increments in the groove coordinates

θ:

Groove angle between the groove coordinates and the material coordinates

\( \upsigma_{1} ,\,\upsigma_{2} ,\,\upsigma_{3} \) :

Principal stress components

\( \upsigma_{nn} ,\,\upsigma_{nt} ,\,\upsigma_{tt} \) :

In-plane stress components in the groove coordinates

\( \bar{\upsigma }_{Y} \) :

Effective stress obtained from hardening law

\( \bar{\upsigma }_{y} \) :

Effective stress obtained from yield function

References

  1. S.P. Keeler and W.A. Backhofen, Plastic Instability and Fracture in Sheet Stretched Over Rigid Punches, ASM Trans. Quart., 1964, 56, p 25–48

    Google Scholar 

  2. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming in the Press Shop, SAE Paper, 680093 (1968)

  3. Z. Marciniak and K. Kuczynski, Limit Strains in the Process of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620

    Article  Google Scholar 

  4. Z. Marciniak, K. Kuczynski, and T. Pokora, Influence of the Plastic Properties of a Material on the FLD for Sheet Metal in Tension, Int. J. Mech. Sci., 1973, 15, p 789–805

    Article  Google Scholar 

  5. A. Ghazanfari and A. Assempour, Calibration of Forming Limit Diagrams Using a Modified Marciniak-Kuczynski Model and an Empirical Law, Mater. Des., 2012, 34, p 185–191

    Article  Google Scholar 

  6. A.K. Ghosh, The Influence of Strain Hardening and Strain Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol., Trans. ASME, 1977, 99, p 264–274

    Google Scholar 

  7. A.N. Chamos, G.N. Labeas, and D. Setsika, Tensile Behavior and Formability Evaluation of Titanium-40 Material Based on the Forming Limit Diagram Approach, J. Mater. Eng. Perform., 2013, doi:10.1007/s11665-013-0495-1

    Google Scholar 

  8. R. Hashemi, A. Assempour, and E. Masoumi, Implementation of the Forming Limit Stress Diagram to Obtain Suitable Load Path in Tube Hydroforming, Mater. Des., 2009, 30(9), p 3545–3553

    Article  CAS  Google Scholar 

  9. R. Hashemi, A. Ghazanfari, K. Abrinia, and A. Assempour, Forming Limit Diagrams of Ground St14 Steel Sheets with Different Thicknesses, SAE Int. J. Mater. Manuf., 2012, 5, p 60–64. doi:10.4271/2012-01-0018

    Google Scholar 

  10. K.W. Neale and E. Chater, Limit Strain Predictions for Strain-Rate Sensitive Anisotropic Sheets, Int. J. Mech. Sci., 1980, 22, p 563–574

    Article  Google Scholar 

  11. A. Assempour, R. Hashemi, K. Abrinia, M. Ganjiani, and E. Masoumi, A Methodology for Prediction of Forming Limit Stress Diagrams Considering the Strain Path Effect, Comput. Mater. Sci., 2009, 45, p 195–204

    Article  CAS  Google Scholar 

  12. M. Ganjiani and A. Assempour, An Improved Analytical Approach for Determination of Forming Limit Diagrams Considering the Effects of Yield Functions, J. Mater. Process. Technol., 2007, 182, p 598–607

    Article  CAS  Google Scholar 

  13. A. Assempour, H. Khakpour Nejadkhaki, and R. Hashemi, Forming Limit Diagrams with the Existence of Through-Thickness Normal Stress, J. Comput. Mater. Sci., 2010, 48(3), p 504–508

    Article  CAS  Google Scholar 

  14. M.C. Butuc, J.J. Gracio, and A. Barata da Rocha, An Experimental and Theoretical Analysis on the Application of Stress-Based Forming Limit Criterion, Int. J. Mech. Sci., 2006, 48(4), p 414–429

    Article  Google Scholar 

  15. A.R. Safikhani, R. Hashemi, and A. Assempour, The Strain Gradient Approach for Determination of Forming Limit Stress and Strain Diagrams, Proc. IMechE, Part B: J. Eng. Manuf., 2008, 222(4), p 467–483

    Article  Google Scholar 

  16. M. Shakeri, A. Sadough, and B.M. Dariani, Effect of Pre-straining and Grain Size on the Limit Strains in Sheet Metal Forming, Proc. IMechE, Part B: J. Eng. Manuf., 2000, 214(9), p 821–827. doi:10.1243/09544054JEM1140

    Article  Google Scholar 

  17. K. Chung and R.H. Wagoner, Invariance of Necking Formation to Material Strength and Strain Rate for Power-Law, Mater. Metall. Trans. A, 1986, 17, p 1632–1633

    Article  Google Scholar 

  18. K. Chung and R.H. Wagoner, Invariance of Plastic Strains with Respect to Imposed Rate at Boundary, Met. Mater., 1998, 4(1), p 25–32

    Article  CAS  Google Scholar 

  19. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. Ser. A, 1948, 193, p 281–297

    Article  CAS  Google Scholar 

  20. S.B. Kim, H. Huh, H.H. Bok, and M.B. Moon, Forming Limit Diagram of Auto-Body Steel Sheets for High-Speed Sheet Metal Forming, J. Mater. Process. Technol., 2011, 211, p 851–862

    Article  CAS  Google Scholar 

  21. P. Larour, “Strain Rate Sensitivity of Automotive Sheet Steels: Influence of Plastic Strain, Strain Rate, Temperature, Microstructure, Bake Hardening and Pre-strain,” Ph.D. dissertation, RWTH Aachen University, 2010

  22. Gh Faraji, R. Hashemi, M.M. Mashhadi, and A.F. Dezaji, Hydroforming Limits in Metal Bellows Forming Process, Mater. Manuf. Process., 2010, 25(12), p 1413–1417

    Article  CAS  Google Scholar 

  23. T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast, 2004, 20, p 1463–1486

    Article  Google Scholar 

  24. M. Ganjiani and A. Assempour, Implementation of a Robust Algorithm for Prediction of Forming Limit Diagrams, J. Mater. Eng. Perform., 2008, 17(1), p 1–6

    Article  CAS  Google Scholar 

  25. A. Assempour, A.R. Safikhani, and R. Hashemi, An Improved Strain Gradient Approach for Determination of Deformation Localization and Forming Limit Diagrams, J. Mater. Process. Technol., 2009, 209(4), p 1758–1769

    Article  CAS  Google Scholar 

  26. R. Hashemi, K. Abrinia, and A. Assempour, The Strain Gradient Approach to Predict Necking in Tube Hydroforming, J. Manuf. Process., 2013, 15(1), p 51–55

    Article  Google Scholar 

  27. R. Hashemi, Gh. Faraji, K. Abrinia, and A.F. Dezaji, Application of the Hydroforming Strain- and Stress-Limit Diagrams to Predict Necking in Metal Bellows Forming Process, Int. J. Adv. Manuf. Technol., 2010, 46(5–8), p 551–561. doi:10.1007/s00170-009-2121-9

    Article  Google Scholar 

  28. H. Li, X. Wu, and G. Li, Prediction of Forming Limit Diagrams for 22MnB5 in Hot Stamping Process, J. Mater. Eng. Perform., 2013, doi:10.1007/s11665-013-0491-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, R., Ghazanfari, A., Abrinia, K. et al. The Effect of the Imposed Boundary Rate on the Formability of Strain Rate Sensitive Sheets Using the M-K Method. J. of Materi Eng and Perform 22, 2522–2527 (2013). https://doi.org/10.1007/s11665-013-0559-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0559-2

Keywords

Navigation